Reduce Risk and Increase Return on Investment by Setting Innovation Strategies

Reduce Risk and Increase Return on Investment by Setting Innovation Strategies

Innovation strategies can mean progress in any industry but especially in the construction industry. Innovation can mean you deliver greater value to customers and work more efficiently. However, because of tight profit margins and risk, innovation or change isn’t always welcome. The right innovation strategies can help you reduce risk and increase your and your customers’ return on investment (ROI).

For any innovation strategy, you must make some changes. These changes could include everything from new methods of handling project planning, labor productivity, safety issues, document management and information sharing to budgeting and addressing overruns in scheduling or costs. At TOPS, we want to help you reduce risk and increase your ROI.

Innovation in Construction

Innovation in Construction

Innovation is change and an openness to improving services, processes and products. Innovation is key to solving challenges you face at your work sites. In the construction industry, heavy equipment, complex materials and big machinery provide more ways to get the job done than ever. However, innovation has been a bit slow in construction compared to other sectors because innovation is expensive, lacks standardization and requires significant research. Shortages in labor and material availability can also hinder innovation. In this industry, you can foster innovation by:

  • Improving efficiency: Improve the efficiency, productivity and quality of your work in the construction industry with a monitored and connected job site.
  • Building with the future in mind: To build with the future in mind, use smart technology, new energy sources, better resource and asset management and innovative construction materials and methods.
  • Promoting sustainable solutions: Many in the construction industry are innovating to promote sustainable solutions that can reduce their environmental impact.
  • Optimizing supply chain management: Optimizing your supply chain management can make it easier to track fleets, improve inventory management and obtain services and materials.

Measuring Return on Investment

You can measure your ROI both internally and externally. Internal ROI includes process, profit and people.

  • Process: This factor focuses on efficiency.
  • Profit: This factor concentrates on the impact on your bottom line.
  • People: This factor refers to employee engagement and skill level.

External ROI, on the other hand, includes competitiveness, community and customers.

  • Competitiveness: This factor refers to how you show your competitive edge to win better projects.
  • Community: This factor looks at how you manage and organize the subcontractors and supply chain within your professional community.
  • Customers: This factor assesses how you acquire, keep and encourage repeat customers.

In measuring ROI, many hard metrics depend on cost and time savings. Some softer metrics are helpful to evaluate in times of high demand, fewer materials, sustainability and fewer people. For example, if you want to replace a manual task with software, you must first analyze whether doing so would save money and time and ensure accuracy. Workers should also feel positive about working with the software, and the software should improve performance and make the job easier to perform.

Increasing Return for Earthworks

To increase your ROI for earthworks, you should understand how to ensure a successful earthwork takeoff. Earthwork is the engineering process in which soil, rock and similar materials are removed, moved or added to change a location’s topography. To increase your return for earthworks, you may want to invest in earthwork estimating software. Some of the features of this software include trench profiling, grid views and strata layer breakdowns.

Introducing New Technology

Technology is the cornerstone of the construction sector’s innovation. From the latest technologies that facilitate sustainability to digitalized solutions that promote productivity, technology is essential to the industry. The goal is to identify new technology and tackle the challenges you have been facing.

To introduce new technology into your work, you need to take a strategic approach. To determine the right technology for a project, identify who will be impacted, lay out the process and choose the technology that improves the process.

  • Identify employees: Determine who will be using this new technology or who will be impacted by it. Consider the current level of understanding and the level of understanding and awareness you need employees to have. With your team, communicate both the how and the why of this new technology.
  • Lay out the process: Next, lay out the process for which you want to use this new technology. The technology should improve this process or help you determine whether you should implement a new approach.
  • Choose the technology: Finally, select the right technology to improve your work. If you are unsure how to make this selection yourself, turn to the Take-off Professionals for help.

New technologies can make job site workers safer and overcome mobility restrictions with technology that aids in the delivery of materials. Today, artificial intelligence (AI) and robots allow construction professionals to work remotely without pausing their projects or exposing themselves to illness during a pandemic, for example. New technology can open the door to other innovative solutions in the construction industry.

Civil contractors use many machines, such as dozers, soil compactors, pavers, asphalt compactors, skid steers and machine control motograders. If you’re a civil contractor, you may also utilize full-scale aircraft or drones to capture data with photogrammetry. If you don’t already use this technology, these may be new tools you want to implement.

If you’re a surveyor, point cloud modeling is one example of new technology you may want to use to conduct land surveys more efficiently and easily. Point cloud modeling uses fewer resources while still accomplishing the same work. Point clouds are collections of several small data points that each represent part of a surface in a specific area like an engineering work site. Together, these points form a 3D structure. At TOPS, we use point cloud data as part of our 3D earthwork modeling.

Learn From Our Trainers at Take-off Professionals

Learn From Our Trainers at Take-off Professionals

As the experts in all things data, TOPS creates 3D data models for machine layout and control, including 3D utility layout, grading surfaces and utility trenches for machines, rovers, pavers and curb machines. We provide earthwork takeoffs with mass haul analysis for roads and sites, material and dirt quantities. Additionally, for the project’s life cycle, we create haul roads. To help boost your productivity on a construction site, we offer the following services:

  • Quantity takeoffs
  • Point cloud modeling
  • Aerial lidar services
  • 3D and GPS control modeling

To build the best 3D models, our team is composed of only full-time employees. Our focus is entirely on data preparation and modeling, so you can rely on our expertise. If you are a busy contractor in need of support with takeoffs and the right technology, we can help. Contact us at TOPS to learn more about reducing risk with construction innovation strategies.

Hiring, Training and New Hire Integration

Hiring, Training and New Hire Integration

In conversations with friends and clients around the country, I am hearing the same story more often: things are busy, and we are hiring. Most of the applicants are younger and computer savvy, why are they so slow to learn? A fair question that begs a deeper dive. I will try to go over the process we recommend to our clients that might help you as well. This is not a “how-to” for all things GPS but rather a linear walk through of the issues surrounding training and eventual competence of a recruit.

Remember When

One of my favorite thoughts when training a new person is that “we all start out as beginners.” After spending some time in the field and encountering your share of problems it’s easy to forget the growing pains. A common reset I use to make this obvious is to hammer a nail with my non-dominate hand. It is awkward, slow, and not pretty. That is exactly what the new person at the controller feels like. Pause and consider the person you’re training before blasting through a menu you know by heart.

Most of us were trained by someone taking us to the field, or parking lot with a dummy job, and going through the paces to get some basics down. From that point everything we did was learned by trial and error. On a jobsite where machines are moving and progress needs to be made, you cannot wait for a visit from a trainer. We had to make things happen. The process was slow, but over the months and years things got easier.

Who Do I Hire?

My second most asked question is, “What type of person should I hire for (fill in the blank) position?” I get asked this for office and field people. My answer has been consistent over the years and goes something like this: “It is easier to teach a person with field experience the mouse clicks than to try and instruct a computer super-user civil construction.” Now that you have my recommendation, here are the tips for finding them.

  • Promote from within. A known level of experience and reliability that may need more training is a safe bet than somebody who looks good on paper.
  • Somebody who is eager is better than someone with more skills that needs to be talked into the opportunity.
  • Be realistic when recruiting. “Oh, it’s easy” is not reality.
  • Just about everyone in today’s job market have enough computer skills to navigate office and field software. The quest is for a mind that thinks in 3D.

How Do I Train Them?

Even the best candidate will need to be trained in the way your company conducts the work. This may require backing up the process a few steps in order to get them to understand your workflow. This can be troublesome for a new person who feels their way is better or easier. Patience is going to play a big part. Hear them out: they may just have a better solution. The best way to get someone thinking like you is to map out your process so they can see how the dots look connected. This big picture presentation is a real help.

Start with documenting your processes before hiring. Putting your steps down on paper allows you to make sure nothing is missed as well as possibly streamlining your workflow. We all started out with a shotgun approach to learning and production. Now is the time to look at what you are doing and make sure it looks good. When you have reduced the elements of the tasks to their easiest elements, then you can effectively train. I use the traditional country song idea; if you look back at those old lyrics, there are no wasted words. Keep that in mind when you get ready to pass knowledge along.

  • Care and maintenance come first. A rover with a dead battery is an expensive paper weight. Tools left in the truck at night get stolen. Make sure you have good policies in place.
  • Daily setup and check-in will save more problems than anything else. I have seen a full day of work a couple tenths off due to incorrect rover pole height. This cannot be overstressed.
  • Spend time on naming and saving job file versions. We send out all our files with dates on them for this reason. Most of the time a call with an issue is traced to somebody on an older version of the file.
  • If this is a ground person and they are the lead, will they be updating machines as well? With multiple surface types being made for each job, this becomes particularly important. Top of dirt, top of subgrade, and finished topsoil surfaces for one job can get confusing. We find it works best when a ground person updates machines as well.
  • I am a big fan of crawl before you walk. We old timers figured out a lot of things in the early days. We cannot expect a new hire to get it quickly. Listed is an idea of what to train and in what order. Only when they are competent in one should you advance them to the next level.
    • Equipment setup. This includes the base, rovers, and machines. The ground person should be able to navigate settings on machines as well as load and update jobsite files.
    • Checking in to a control point at the start of each day and benching in machines to verify their accuracy and wear edge settings.
    • Rough surface marking comes next. This is a good way to evaluate a person’s ability to think in three dimensions. Guiding mass excavation should get things within a few tenths and it keeps a person busy on a big site. I tape red and blue marking paint cans together, go to an area and paint a big number in the dirt and maybe even mark along the daylight line for that area.
    • Utilities may be going also. Now comes the time for performing detailed layout. We produce points for flow lines of pipe as well as offsets to save the grade checker from constantly running back to a run. You will need to teach all about points for this portion, it is a lot to learn and will take time.
    • When utilities are mastered, site details are not a big step. 2D radius points and curb offsets need to be explained and shown in the field. The best way to teach this is to get out there and follow the new user as they do the work.
  • Some companies have their field people do small changes on the fly either in the field or back at the office. I feel everyone needs to know how data prep works. It helps their understanding of why things look the way they do in the field.

How Long Does It Take to Train?

It is safe to assume that all people will learn at a different pace. You are required to feel this out and adjust accordingly. Here are some thoughts.

  • You need to understand learning styles. A visual learner will do better watching you do the work and absorb the process. Tactile types will only get the idea when they press the buttons. Know your student to make the process go quicker.
  • The process needs to be broken into sections. As each is mastered then the next can be tackled. The previous section of this article shows the chapters of the book that need to be absorbed. Jumping ahead before the first is memorized will result in frustration.
  • You cannot be on site the entire time while a newbie is learning. Responsibilities will require you to go and do other things while they are alone to perform some work. Most of the time questions can be answered by a phone call. You should know the software well enough to answer the basics.

Who Should the Trainer Be?

Every company needs a champion. That is the person who knows the equipment and has a comprehensive knowledge of all phases of your process. I have stressed over the years that this is critical to success. The champion is the early adopter and looks at bugs and setbacks as part of the process. In a smaller company this may be the trainer as well.

A dedicated trainer/GPS manager in larger companies will have a different role. Their focus is more on the field. They know what is happening with office work and how to do it, but they need to keep machines moving. Not only will they train new hires but will be required to keep the field machines working and up to date.

Factory Training

Manufacturers also offer training. It is a great start for new hires, especially if they are switching brands. These people know what to do but are not familiar with the buttons to press. In person or online training allows you to get the heavy lifting of learning software and basics out of the way. Be aware that they still need to learn how your company performs and documents processes. That is something only you can do.

Data Details: Highways

Data Details: Highways

Initially, the biggest impact from machine control came to the heavy highway contractors. I can remember when Blade Pro 3D and a robot could make crisp crown transitions and get contractors bonus money for smoothness. Even with machine control technology being used in all aspects of civil construction, highway work still benefits from being on the front lines of development. Construction technology manufacturers know the high stakes associated with this work and focus their development on being first to market for new concepts and improvements.

Over the years we have made sure to be in front of the curve. It is satisfying to help a contractor by providing the correct files for their new technology. A client that is new to high level machine control may not initially want to be tasked with model building in addition to field responsibilities. Equipment manufacturers put data modelers together with these people to make things easier. This only happens because the manufacturers trust our work, guaranteeing success. I will cover some things we have been doing for years as well as some newer uses for data in a road model.

International Roughness Index (IRI)

IRI is the standard to quantify road surface roughness. A continuous profile along the road is measured and analyzed to summarize qualities of pavement surface deviations that impact vehicle suspension movement. Reported in units of inches-per-mile, the IRI describes how much total vertical movement a standard passenger vehicle’s body would experience if driven over a 1-mile segment of the subject pavement at 50 mph. IRI is useful for assessing overall pavement ride quality; a higher IRI value indicates a rougher road surface. A good IRI is less than 95 inches per mile while poor is over 170.

Various methods are used to measure the index, from simpler manual units to electronic systems. Contractors will receive a bonus if the IRI is within tolerances specified in the contract documents. Different types of roads have different requirements depending on location, number of lanes and traffic count.

The reason I mention this is that as competent model builders we can improve the contractor’s chance of getting their IRI bonus. When value engineering is allowed, or the job is a design/build, we can adjust the profiles and super elevated curve sections to make machine control better. We are talking about precise adjustments in parameters to improve the surface. All roads need to be in specified tolerances. When there is some latitude allowed, we can make things better.

The way a model is built plays a big part in making a road turn out smooth. Using an older program like Terramodel and then converting that into an xml surface will cause problems that will never be worked out in the machine control’s attempts to get things right.

To create a model that can be properly read by machine control starts with a road job, meaning alignments and templates. Native software can easily make sense of these elements and go a long way in producing great roads when using the same brand of machine control as the software.

Paving Only Models

We have a lot of clients that are performing paving only, weather asphalt or white paving. They are going to be paid for a specified thickness of material over the base. The easiest thing for them to do is trim the base with an elevation dial down. This allows final checks of the lower priced base then the finish will be parallel to the stone.

When another contractor is doing the subbase, things can get complicated.

  • Do they use machine control, is it the same brand?
  • They may rely on stringline.
  • What tolerance are they held to for base? (This can cause issues with minimum depth requirements.)

In these situations, we work hard to get everybody on the same page. Yes, it can get as difficult as it sounds. We stay on top of things and eventually help the job to get on track. The last thing anybody needs is finger pointing when the job is not correct.

Track Grades

When performing paving we need to add a place outside the paved area for the machine to smoothly follow the road profile. This track grade needs to be included as a separate model to subgrade elevation.

An average horizontal distance is 5-feet. When building this, we must be careful with stepped subgrades and super elevation transitions. These complicate things and call for special procedures. The result must be a smooth extension of the roadbed, so the paver does not jump or make exaggerated corrections.

When paving is done, the work needs to be covered up and normal shoulder and grading slopes will need to be made. This requires a different model to show how things will look when finished. Any road job starts with templates that represent the finished work. When we get things to final condition, we can now do dial-downs for subgrades, edges, and slopes. Multiple models make things more difficult for the field. Make sure everybody is on the same page. The best way to accomplish this is to have one person in charge of loading machines and rovers.

Daylight Models

As I mentioned, we start with a complete model from catch to catch. This means we are intercepting the existing ground with the correct slopes and transitions. A different model will eventually go to the paving sub, but when we start with a complete model there is no doubt how the individual pieces will fit.

  • The most critical component are the driving lanes. Make sure all elements are correct and correspond to the plans. We see differences in COGO math with alignments all the time. It is up to the model builder to get things correct, even if the math seems a bit off. This could be an entire post on its own.
  • On roads with curbs, attention needs to be made to the base under the curb. Many plans are drawn with intricate steps and slope changes. You may find out later that “we just do it this way” simplifies the job. Check with the stake holders to confirm. We might make an intricate model that has to be redone and simplified based on local value engineering.
  • Side slopes are typically easy. You may find special fill materials being used for improving erosion resistance. Be careful of your trigonometry when calculating the actual depth of the material. This stuff is usually expensive, and you do not want to waste it.

Slope Stake Reports

Whether it is for the field to use, or a requirement of the job, slope stakes can be a big help when used properly. The biggest advantage is the ability to use non-guided machinery to do most of the heavy lifting. When things get close, machine control can get it right on the money. Producing these reports is not difficult when using the software used to make the initial model. This is another reason we start with a complete daylight model. Slope stake reports are just a few mouse clicks.

For reporting options, we always default to what the contractor and surveyor on the job are used to. Remember, it is easy to customize reporting in the office and difficult to try and rethink an unfamiliar format in the field.

X